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The realization of topological solitons, zero modes, and supersymmetry in the 
CP 1 nonlinear sigma model, a theory of high-Tc superconductivity, is presented. 

1. INTRODUCTION 

Despite intense effort on the high-temperature superconductors, there 
is no real agreement about how these fascinating materials are to be 
explained. They show apparently contradictory aspects. Many of the super- 
conducting properties appear surprisingly similar to those of normal BCS 
superconductors, such as the 2e flux quantization (Gough et al., 1987), 
measurements of penetration depth (Hashman et  al., 1989), Andreev reflec- 
tion (Van Bentum et al., 1988), and the Knight shift (Alloul et al., 1988). 
But other experiments are surprisingly different, for example, the high value 
of transition temperature (Miiller and Olsen, 1988), the short coherence 
length (Yamagishi et al., 1988), and the remarkably small isotope effect 
(Faltens et  al., 1987). It is natural to suppose that phonons now are not 
responsible for high-To superconductivity. 

Most new superconductors are all layer oxides, where each unit cell 
contains one or several parallel CuO2 conducting planes (Mfiller and Olsen, 
1988). Observed anisotropy indicates the quasi-two-dimensional character 
of CuO2 planes. The stoichiometric CuO2 planes form a nonconducting 
antiferromagnetic ordered structure. It is confirmed by Raman scattering, 
neutron scattering, and infrared optical experiment that the doping does 
not destroy the local moments. Still, there are low-energy spin excitations 
in the doped samples which are superconducting and there is strong correla- 
tion between hole and spin excitations. This leads to the magnon pairing 
mechanism (Birgeneau) or to a disordered RVB state (Anderson, 1987). 

I Institute of Physics, Silesian University, Katowice 40007, Poland. 
1155 

0020-7748/90/1100- I 155506.00/0 �9 1990 Plenum Publishing C~rporation 



1156 Mafika 

It is interesting that the spin antiferromagnetic system in the continuum 
field approximation corresponds to the nonlinear o- model (Dzyaloshinskii 
et al., 1988) in 2 + 1 dimensions (Wilczek and Zee, 1983) or to CP 1 nonlinear 
o- (Rajaramam, 1982) coupled to SO(3) gauge field theory with a Chern-  
Simons (CS) term (Jackiw, 1984). This opens a broad window for applying 
the topological gauge field theory (Polyachronakos, 1987), which in 2+ 1 
dimensions has exciting properties. In the presence of  the CS term it leads 
to fractional charge (Niemi and Semenoff, 1986) and boson-fermion trans- 
mutation (Wilczek and Zee, 1983). In this way an exotic anyon (Yi-Hong 
Chen et al., 1989) model appears in the high-temperature superconductivity. 

The aim of this paper is to present the topological solitons and associ- 
ated zero modes appearing in two-dimensional CuO2 planes. 

2. THE T O P O L O G I C A L  SOLITONS IN THE CP ! SIGMA M O D E L  

The antiferromagnetic two-dimensional CuO2 plane in the field theory 
limit may be described by the SO(3) nonlinear sigma model (Mafika and 
Molak, 1989) with the Lagrange function 

1 a ~=~O~n 0~na + A ( n a n a -  1) (1) 

with n as the unit vector [n = (sin O cos O, sin 0 sin O, cos O)]. This leads 
to the Euler-Lagrange equations 

[~n a = -An  a (2) 

and 

nana-- 1 (3) 

with [] = -0~ 0 ". Using the unit vector condition (3), we get 

( R - n  b �9  = 0  (4) 

This equation can be solved using the Bogomolny ansatz 

0~n = ~=e~(n x Un)  (5) 

This produces the topological soliton (instanton in D = 1+ 1 space-time) 
with the $2-> S 2 mapping. As 

lim na(x) = n0c S 2 (6) 

then the S 2-> S 2 map defines the ~'2(S 2) = Z homotopy group, which gives 
us the topological charge 

1 f 2 ~ Q=-~-~ j d xe~(O n• n)=n  (7) 
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This s i tua t ion  is very s imi la r  to the  case o f  the  w ind ing  n u m b e r  for  the  

vor tex  in s u p e r c o n d u c t o r s  [ in this case we have  the ~'1(S 1) = Z h o m o -  
t opy  g roup] .  The  t o p o l o g i c a l  charge  is r e spons ib l e  for  the  so l i ton  energy  

quan t i za t i on  

E = 47rQ = 4~'n (8) 

The  so l i ton  so lu t ion  for  the  SO(3)  non l inea r  s igma m o d e l  is well  k n o w n  
( R a j a r a m a n ,  1982). It m a y  be desc r ibed  as 

~ o ( z ) = I I  ( z - z o ) ] "  (9) 

where  

and  

z = x l  + x 2 (10) 

o~ = o~l+ iw 2 (11) 

with A = a / 2 .  So, for  example ,  for  n = 1 in the  cy l indr ica l  coo rd ina t e  system 
we have  

2ar  
nr - r2 + a2 (12) 

r 2 _ a 2 
n3 = (13] r 2 + a 2 

n~ = 0  (14) 

w h e r e  r 2 2 2 = Xl + x2 (F igure  1) (Mafika ,  1989). In s t ead  o f  the  unit  real  vec tor  
n ~ , we m a y  in t roduce  the two complex  sca lar  fields (z) 

= (15) 
Z 2 

via  the  iden t i f ica t ion  

with the  res t r ic t ion  

. i = - : Z + ~ i ~  (16) 

Z + ~ = I  (17) 

o-i are cer ta in ly  the  Paul i  matr ices .  The Lag rang ian  must  also inc lude  an 
ext ra  te rm of  the form A ( Z + ~  - 1) to accoun t  for  the constra ints .  The n / 
uni t  field now may  be expres sed  by  the field ~ as 

n' : - ( z ' z 2 +  z ' z , )  (18) 
n 2 = - i ( - z * z 2  + z*z~) (19) 

n 3 = - ( z ' z 1  - z*z2)  (20) 
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Fig. 1. The topological soliton profile. 

The complex vector Y may be obtained from the Y0= (o) vector by the 
SU(2) unitary transformation 

Y = UYo (21) 

where 

with 

U = e i ~ ' ~ ' o / Z E s u ( 2 )  (22) 

w' = ( - s in  ~o, cos ~o, 0) (23) 

In the explicit form the vector is as follows: 

~'e -i~ sin �89 (24) 
Y=[ cos�89220 l 

Let us notice that the transformation 

~ Y ' =  ei~Y (25) 

does not change the n i vector. This means that we have identified the (z~, z2) 
and (ei'~zl, ei~ points. But this is just the CP ~ space definition. Now ~o 
given by (1) may be expressed by the complex ~ field. We get 

~o = 2 (0~ ' )*  O~Y+ 2(Y * O~,Y)(Y* O~Y) + A (Y*Y - 1) (26) 
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or equivalently 

~o = 2 D ~ Y * D " Y  + ,~ ( N * Y  - 1) 

with the covariant derivative as 

D.  = 0~. + iA.  

and the gauge field 

(27) 

(28) 

A~ = iN* 0 .Y (29) 

In this way, we can interpret the CP 1 sigma model as the U(1) gauge field 
theory in the e ~ oe limit. This means that 

5% = lim 
e ~ c X 3  

where 

1 F . . F  2(D.~f) D ~f+A(~f*~f -1)  
= 4e 2 

(30) 

and 

F ~  = a~A~ -O~,A~ (31) 

As the kinetic Yang-Mills term is absent (e ~ oe), the only term which can 
appear is the pure topological Hopf  (CS) term. The origin of this term has 
only topological nature. The reason lies in the fact that we have the vacuum 
degeneracy [n) numbered by the 7r2(S 2) = Z  homotopy group. However, 
this degeneracy is destroyed by the quantum processes. The quantum 
tunneling processes produce the new vacuum 

I o ) = E  e-~O"[n) (32) 
t l  

Exactly in the same way, the quasimomentum state ]k) is formed from the 
Wannier states In). At the effective quasiclassical level the [O) state produces 
a new pure topological CS term, 

~ef = LP+ ~cs  (33) 

with 

1 
~ c s -  4,n. 2 Oe~PA~,F~p (34) 

The nonlinear sigma model with O ~ 0 represents a very interesting 
realization of the pure topological gauge field theory. Such theories have 
fascinating properties, They have no propagating degrees of freedom 
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(Witten, 1988a, b) and their Hilbert space is finite, possessing only a degener- 
ate number of  vacuum states with fractional charges (Polyachronakos, 1989). 
The D = 2 + 1 topological gravity, which seems to be an interesting example, 
appears to be fully renormalizable (Witten, 1988a, b). The O parameter may 
be regarded as a new parameter of  the theory which should be established 
by experiment. If  O = 0, then the system is called the quantum paramagnetic 
state (QP), and if ,9 # 0, the quantum spin liquid (QSL). If O ~ 0, then 
equations (33), (34) give us the Euler-Lagrange equations as follows: 

-a,~F ~ = �89 *F ~ (35) 

with 

and 

* F ~ - I  ~ p ~  - 2 e  , , ,p (36)  

e20 
m = ~r 2 (37) 

It is easy to show that the parameter m may be interpreted as the mass of 
the gauge field. For that purpose let us multiply the equation of motion 
(35) by (mg~+e~,p~OP), using the fact that, according to equation (35), 
Ou(*F ~') =0,  we get the Kle in-Gordon equation 

(IN - m2)(*F,)  = 0 (38) 

This is the topological origin of the mass. We see that the field strength 
tensor propagates as a free field of mass m. If  e ~ oo, then n ~ ~ and the 
gauge particles happen to be extremely heavy. In this way the propagating 
excitations disappear from the theory. However, the CS term has less 
symmetry than the kinetic Yang-Mills term. Due to the presence of e "~p, 
it violates discrete symmetries (T  and P inverse symmetry). It is also not 
invariant with respect to the non-Abelian gauge group. The CS action 

= I d3x ~q~CS (39) 

transforms with respect to the gauge symmetry as follows: 

5#cs ~ S#bs = 5#cs + 20Q, (40) 

where Q, = n ~ Z = ~2(S 2) is the topological charge (7). It is only invariant 
for trivial (n -- 0) gauge transformation. However, this is not so dangerous. 
In the Feynman path integration method the action appears as exp(ib~). 
This term will be invariant if the appropriate quantization condition is 
imposed on O. In this way the O quantization appears and 

O =0,  7r, . . .  (41) 
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I f  O ~ 0, then the topological soliton can change its properties drastically. 
It gains the spin (Dunne et aL, 1989) 

0 
S~o~ - (42) 

27r 

In a similar way the ~f quanta  gain the spin 

q'r 

Sz - (43) 
20  

It is easy to notice that for O = 7r we get &o~ = Sz = 1/2. This is the boson-  
fermion transmutation (Wilczek and Zee, 1983). In this case and for n = 1 
the CS term can be fermionized at low momenta ,  

exp[i f dax-~ e~~ 

=f[~q~exp[if d3x~{iy~(O~+iA~,)+m}4,] (44) 

In this way the neutral fermion (holino) appears  in the theory. The effective 
Lagrange function now may be described as 

~ r  = 5f0+ it~y"(O, + ia,~) • mtptp (45) 

Of  course, it gives us the Dirac equation for the holino in the external gauge 
field A~,, 

iy~[(0~ + iA~) • m]4, = 0 (46) 

with yo=  ~3 y l  i~l, y2= i 2 .  

3. ZERO M O D E S  

The first high-Tc superconductors have very distinct properties. In the 
insulating phase, the strongly correlated Cu spins are assumed to be arranged 
antiferromagnetically (the homogeneous spin phase n3 = const). Although 
band calculations indicate a partially filled valence band of Cu(3d) -O(2p)  
hybridized orbitals, the planes are insulating due to the opening of  a gap 
at the Fermi level accompanying the formation of the static spin-density 
wave (SDW) (spin Peierls transition; Figure 2). Holes in CuO2 planes near 
the Fermi level may be described by the Dirac equation (with c as a material 
constant). The action is 

& = ig,-/-a,~g, (47) 
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Fig. 2. The spin Peierls transition. 

This means that near the Fermi level the dispersion relation is linear. 
Quasi-two-dimensionality means that CuO2-plane fermions have only $3 
spin component,  

$3 = �89 = �89 (48) 

The strong (Jcu-o 330 K ferromagnetic for YIBa2Cu3OT) interaction between 
hole spins and neighboring Cu orbitals may be described as 

~71 = �89 = 1jSn3(X) tff~ (49) 

In the field theory interpretation this is a generalization of the mass term 
in the Dirac equation. The total Lagrangian 

~ e = L e 0 + ~  , (50) 

leads to the antiferromagnetic Peierls transition. Indeed, in the case of a 
homogeneous phase (n  3 = 1), equation (49) gives us the fermion mass 

m =JS  (51i 

which generates the gap A, as Ek = (k2+ mZ) ~/2= (k2+A2) ~/2. In this case 
the metal state disappears. In the nonhomogeneous case in the presence of 
the topological solitons we have a more complicated situation. Now the 
solitons work rather as some potential in the Dirac equation 

iy" O~,O + JSn3( x )or3llt = 0 (52) 
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Only at infinity when n3(x)-> 1 do we have the mass (51) interpretation. 
The Dirac equation (52) generates the Hamiltonian 

~-mn3(r) ,  e-i~0, ~ 
H = ( _e,~0, ' mn3(r)J (53) 

It is convenient to write the spinor O as 

o= { e-i~/Z u'~ e+i~/% j (54) 

This transforms the eigenvalue equation H~0 = EO into H ' q / =  EO', with 

and 

H=( on3 r  0} 
-0r, mn3(r) = kr2Or- mn3(r)o-3 (56) 

The unitary transformation oR = exp(-�89 transforms H'--> H"= ~176 
equal to 

0, 
H" 

= l - 0 r  + W(r), 

or 

H"=o+~ (58) 

with W(r) = mn3(r) as the superpotential. The operators 0 and 0 realize the 
supersymmetric quantum mechanics. They are built from bosonic operators 

1 
a = ~  [0r+ W(r)] (59) 

a+ 1 
= ~ [-O, + W(r)] (60) 

obeying 

[a, a +] = W'(r) (61) 

and from fermionic operators 

(62) 

(63) 
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obeying 

In the result 

The Laplace operator 

may be rewritten as 

with 

Mafika 

{f, f+} = 1 (64) 

f2  =f+2 = 0 (65) 

32 = 02 = 0 

A = (H") 2 = (3+0) 2 = 30+03 (66) 

A = 2Y( (67) 

~ = 1  Ida2+ W2(r)] + 1 2  2 W'(r)cr3 (68) 

is the Hamiltonian of the Witten supersymmetric quantum mechanics. 
{~, 0, 0} are generators of supersymmetry. For example, taking W ( x ) = x ,  

describes the supersymmetric harmonic oscillator. It is physically realized 
in the two-dimensional case for electrons in an external magnetic field. The 
conditions 

0~0o = 0qTo = 0 (69) 

define zero modes. Indeed, from (69) we have ~q~o = 0 and HqJo = 0. It is 
easy to notice that 

~b o -~ tP 'o = qJ o + O a (70) 

where a0a =0,  defines equivalence classes. This is just the cohomology 
classes definition. The number of zero modes according to the Atijah- 
Hirzerbruch theorem has a topological origin. Equations (69) for zero modes 
have solution 

The zero mode chooses only one spin component. This is reminiscent of 
the chirality violation in higher-dimensional cases. For the supersymmetric 
harmonic oscillator, ~o = A exp(�89 2) means simply the ground state now 
with energy E = 0. 
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Fig. 3. The ze ro-mode  profile. 

r 

The CP ~ topological soliton [Equations (21)-(24)] produces a zero 
mode which can be interpreted as a hole bound state captured on the soliton 
with energy E = 0 exactly (on the Fermi level). The soliton profile (13) gives 

{ O } e x p { m [ r - 2 a a r c t g ( x / a ) ] }  (72) ~t0 ~--- /)0 

This zero mode (Figure 3) will have an appropriate probability interpretation 
only if the hole spin is equal to -1/2. Spin +1/2 could not be captured 
inside the soliton. The s-pairing is possible only between a zero mode and 
the spin-l/2 hole. The bisoliton gives only the d-pairing. This is, however, 
rejected by the experiment (Alloul et al., 1988). 

4. CONCLUSION 

In this paper a field-theoretical approach to high-T~ superconductivity 
was presented. The antiferromagnetic CuO2 planes were represented by the 
CP 1 field theory. Topological solitons exist in this theory and allow one to 
realize topological field theory. Interactions between topological solitons 
and CuOz-plane fermions leads to the soliton-fermion bound state (zero 
mode). A similar case occurs in one-dimensional polymers. Its charged 
solitons are responsible for the conductivity. In the result of the chiral 
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a n o m a l y  they  have  a f rac t iona l  charge.  A s imi la r  p h e n o m e n o n  also shou ld  
occur  in the  C P  1 case. I t  is in teres t ing  tha t  the  zero m o d e  exis tence  is a 
resul t  o f  some  supe r symmet ry .  I f  the  high-To supe rconduc t iv i t y  rea l ly  is 
de sc r ibed  by  such a theory ,  then  it seems to be  qui te  interest ing.  
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